
3.2.2 LINE SEARCH METHODS: 
EXTRAS. 



3.2.2.1 LINE SEARCH 
METHODS: USING 
INTERPOLATION IN LINE 
SEARCH 



  Quadratic Interpolation 
 

Approximate    g(α) with h(0) 
 

 h(0)=g(0),  h’(0) =g’(0), g(α0) 
α	



   g(α0) 
        

  α1 

⎛ g(α0)− g( 0)−α0g' (α)⎞      2 
 2 



Quadratic Interpolation 
Potential step 

α	



α1 =	

   g'(α)α02 

2(g(α0)− g(0)−α0g'(α)) 
           

   g(α0) 
        

 α1 



⎢b⎥ = α α 2(α   −α  )⎜	

 −α03 ⎣   ⎦	

 ⎝	

 α1   ⎠⎝g(α0)− g(0)− g'(0)α0 ⎠	



2 

 2 
0     1          1              0 

 Cubic Interpolation 
  

h(α) = aα 3 +bα 2 +αg'(0)+ g(0) 

⎡a⎤                  1              ⎛ α0 −α12 ⎞⎛g(α1 )− g(0)− g'(0)α1 ⎞	


 3  ⎟⎜                                              ⎟	



−b+    b2 −3ag'(0) 
 3a α2 =	



Cubic Interpolation 



3.2.2.2 LINE SEARCH 
METHODS: OTHER LINE 
SEARCH PRINCIPLES 



Unconstrained optimization methods 
 

  xk+1 = xk +! k dk

  ! k :   dk :Step length Search direction 

1) Line search 

2) Trust-Region algorithms 

Quadratic approximation 

Influences 



Step length computation: 

1) Armijo rule: 

2) Goldstein rule: 

  !1" k gk
T dk # f (xk +" k dk ) $ f (xk ) # !2" k gk

T dk

 0 < !2 <
1
2 < !1 <1

  f (xk ) ! f (xk + "
m# k dk ) $ !%"m# k&f (xk )T dk

 ! "(0,1)  ! "(0,1/ 2)

  
! k = "(#f (xk )T dk ) / dk

2

   

   



3) Wolfe conditions: 

  f (xk +! k dk ) " f (xk ) # $! k gk
T dk

  !f (xk +" k dk )T dk # $gk
T dk

 0 < ! " # <1

Implementations: 

Shanno (1978) 

Moré - Thuente (1992-1994) 



3.2.2.3 LINE SEARCH 
METHODS: TAXONOMY OF 
METHODS 



Methods for Unconstrained Optimization 

1) Steepest descent (Cauchy, 1847) 

  dk = !"f (xk )

  dk = !"2 f (xk )!1"f (xk )

2) Newton  

3) Quasi-Newton (Broyden, 1965; and many others) 

  dk = Hk!f (xk ) 2 1( )k kH f x −≅ ∇



4) Conjugate Gradient Methods (1952) 

  dk+1 = !gk+1 + "ksk

  sk = xk+1 ! xk

  dk ! "#2 f (xk )"1 gk   
rk = !2 f (xk )dk + gk

 !k
 is known as the conjugate gradient parameter  

5) Truncated Newton method (Dembo, et al, 1982) 

6) Trust Region methods  



7) Conic model method  (Davidon, 1980) 

  
c(d) = f (xk ) +

gk
T d

1+ bT d
+ 1

2
dT Ak d

(1+ bT d)2

  
q(d) = f (xk ) + gk

T d + 1
2

dT Bk d

8) Tensorial methods  (Schnabel & Frank, 1984) 

  
mT (xc + d) = f (xc ) +!f (xc ) "d + 1

2
!2 f (xc ) "d 2

  
+ 1

6
Tc !d

3 + 1
24

Vc !d
4



10) Direct searching methods 

9) Methods based on systems of Differential Equations  
    Gradient flow Method  (Courant, 1942)  

  
dx
dt

= !"#2 f (x)!1#f (x)

  x(0) = x0

Hooke-Jevees (form searching) (1961) 
Powell (conjugate directions) (1964) 
Rosenbrock (coordinate system rotation)(1960) 
Nelder-Mead (rolling the simplex) (1965) 
Powell –UOBYQA (quadratic approximation) (1994-2000) 

N. Andrei, Critica Retiunii Algoritmilor de Optimizare fara Restrictii 
Editura Academiei Romane, 2008. 



3.3 DEALING WITH 
INDEFINITE HESSIANS 
MATRICES 



Closest Positive Definite Matrix 

•  But Hessian is positive definite 
(maybe) ONLY at solution!! 
What do we do?  

•  Answer: Perturb the matrix.  
•  Frobenius NORM 
•  Closest Positive Definite 

Matrix (symmetric A) 

A F = aij
2

i, j=1

n

! = tr(A*A) = " i
2

i=1

n

!

A = AT ! A F = aij
2

i, j=1

n

" = tr(A2 ) = #i
2

i=1

n

"

Q1
TQ1 =Q2

TQ2 ! Q1AQ2 F = A F

A =QDQT A1 =QBQ
T

B =
!i !i " # > 0
# !i < #

$
%
&

'&



Modifying Hessian 



1.Adding Multiple of the Identity 

•  Q: what may be the downside of the approach? 



2. Modified Cholesky  
• Ensuring Quality of the Modified Factorization  
(i.e. entries do not blow up by division to smal 
l elelments) 
• AIM:  

• Solution: Once a “too small d” is encountered 
Replace its value by : 
 
 
 
• Then:  

•  Q: Cholesky does not need pivoting. But  
does it make sense here to NOT pivot?   

Bkd = !"f xk( ) # LDLTd = "f xk( )
Bk = "xx

2 f xk( ) + Ek



LDL factorization WITH permutation (why?) 

•  EXPAND 



3. Modified LDLT (maybe most practical to 
implement ?) 

•  What seems to be a practical perturbation to PD that makes it 
have smallest eigenvalue Delta?  

•  Solution: Keep same L,P, modify only the B!  

I will ask you to 
code it with 
Armijo 



3.4 QUASI-NEWTON 
METHODS 
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3.4 QUASI-NEWTON 
METHODS: ESSENTIALS 
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Secant Method – Derivation (NLE) 
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Newton’s Method 

Approximate the derivative 

Substituting Equation (2) 
into Equation (1) gives the 
Secant method 

(1) 

(2) 

Figure 1 Geometrical illustration of 
 the Newton-Raphson method. 

f (x) = 0



Secant Method – Derivation 
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The Geometric Similar Triangles 
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Figure 2 Geometrical representation of 
 the Secant method. 

The secant method can also be derived from geometry: 

can be written as 

On rearranging, the secant 
method is given as 



Multidimensional Secant Condtions. 
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Given two points xk and xk+1 , we define (for an optimization problem) 	


              and	


Further, let pk = xk+1 - xk , then	


	



	

gk+1 - gk ≈ H(xk) pk    	


	


If the Hessian is constant, then	


	



	

gk+1 - gk = H pk   which can be rewritten as  qk = H pk   	


	


If the Hessian is constant, then the following condition would hold as well	


	



	

H-1
k+1 qi = pi 	

 	

0 ≤ i ≤ k	



	


This is called the quasi-Newton condition.	



gk = !f xk( ) gk+1 = !f xk+1( )

The Secant Condition 



Broyden–Fletcher–Goldfarb–Shanno 
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Remember that qi = Hk+1 pi  and H-1k+1 qi = pi  (or, Bk+1 qi = pi)    0 = i = k

Both equations have exactly the same form, except that qi and pi are interchanged and H
is replaced by B (or vice versa).

This leads to the observation that any update formula for B can be transformed into a
corresponding complimentary formula for H by interchanging the roles of B and H and of
q and p.  The reverse is also true.

BroydenœFletcherœGoldfarbœShanno formula update of Hk is obtained by taking the
complimentary formula of the DFP formula, thus:

Hk+1 = Hk +  
qkqkT

qkTpk
    œ  

HkpkpkTHk
pkTHkpk

   

By taking the inverse, the BFGS update formula for Bk+1 (i.e., H-1k+1) is obtained:

Bk+1 = Bk +  ( 
1 + qkTBkqk

qkTpk
  )  

pkpkT

pkTqk
   œ  

pkqkTBk + BkqkpkT

 qkTpk
   



How do BFGS methods work? 



Advantage of quasi-Newton  

•  Matrix is ALWAYS positive definite, so line search works fine.  
•  It needs ONLY gradient information.  
•  It behaves *almost* like Newton in the limit (convergence is 

superlinear).  
•  Optimality is nice, but what you really need is that (1) it needs 

only derivatives and (2) it satisfies the secant property and (3) if 
the original matrix is PSD so is the update. I will ask you to 
prove them.  

•  In its L-BFGS variant it is the workhorse of weather forecast and 
operational data assimilation in general (a max likelihood 
procedure, really).  



4.1 TRUST REGION 
FUNDAMENTALS 



Trust Region Idea 

•  Notations 

•  Quadratic Model  

•  Order of Quadratic Model (Taylor)  

f k = f xk( ) !f k = !f xk( )

mk p( ) = f k + pT gk + 1
2
pT Bk p

f xk + p( ) = f k + pT gk + 1
2
pT!xx

2 f xk + tp( ) p t "[0,1]

mk p( )! f xk + p( ) =
O p 2( )
O p 2( ) Bk = "xx

2 f xk( )

#

$
%

&
%



Trust Region Subproblem 

min
p!Rn

mk p( )
subject to p " #k

Called Trust Region 
Constraint 

•  If                                   where                then       is 
the solution of the TR subproblem.  

•  But the interesting case lies in the opposite situation 
(since not, why would you need the TR in first 
place )?    

 B
k ! 0 and p*k = Bk( )!1

gk ; p*k ! "k pk



Trust Region Geometric Intuition 



Example 

minx x2 !1( )2

•  Line search started at 0 cannot progress.  
•  How about the trust-region? 

 
•  Either solution will escape the saddle point -- 

that is the principle of trust-region.  

mind! 2d
2; d " #



General approach 

•  How do we solve the TR subproblem?  
•  If                (or if  we are not obsessed with 

stopping at saddle points) we use “dogleg” 
method. (LS, NLE). Most linear algebra is in 
computing 

      
•  If  fear saddle points, we have to mess around 

with eigenvalues and eigenvectors – much 
harder problem.  

 Bk ! 0

Bkdk ,U = !gk



Trust Region Management: Parameters 

•  The quality of the reduction. 

•  Define the acceptance ratio 

•  Define the maximum TR size 

!k =
f xk( )" f xk + pk( )
mk 0( )" mk pk( )

Actual Reduction 

Predicted Reduction 

! " 0, 1
4

#
$%

&
'(

!̂; ! " 0, !̂#$ )



TR management 

I will ask you to 
code It with 
dogleg 



What if I cannot solve the TR exactly ?  

•  Since it is a hard problem.  
•  Will this destroy the “Global” convergence behavior?  
•  Idea: Accept a “sufficient” reduction.  
•  But, I have no Armijo (or Wolfe, Goldshtein criterion) …  
•  What do I do?  
•  Idea? Solve a simple TR problem that creates the yardstick for 

acceptance – the Cauchy point.  



4.2 THE CAUCHY POINT 



The Cauchy Point 
•  What is an easy model to solve? Linear model 

•  Solve TR linear model  

•  The Cauchy point. 

 
•   The reduction                   becomes my yardstick; if trust region has at 

least this decrease, I can guarantee “global” convergence  (reduction 
is             ) 

lk p( ) = f k + gk ,T p

pk ,s = argmin
p!Rn p "#k lk p( )

! k = argmin
!"R ! pk ,s #$k mk ! pk ,s( )

pk ,c = ! k pk ,s; xk ,c = xk + pk ,c

m(0)! m pk ,c( )

O gk
2( )



Cauchy Point Solution 

•  First, solution of the linear 
problem is 

•  Then, it immediately follows 
that   

pk
s = ! "k

gk
gk

! k =

1 gk
T Bkgk " 0

min
gk

3

gk
T Bkgk( )#k

,1
$

%
&

'

(
) otherwise

*

+
,,

-
,
,



Dogleg Methods: Improve CP 

•  If Cauchy point is on the boundary I have a lot of decrease and I 
accept it (e.g if                         )  

•  If Cauchy point is interior, 

•  Take now “Newton” step                      (note, B need not be pd, 
all I need is nonsingular).   

gk ,T Bkg
k > 0; pk ,c = !

gk
2

gk ,T Bkg
k g

k

gk ,T Bkg
k ! 0;

pB = !Bk
!1gk



Dogleg Method Continued 

•  Define dogleg path 

•  The dogleg point:  

•  It is obtained by solving 2 quadratics. 
•  Sufficiently close to the solution it allows me to choose the 

Newton step,        and thus quadratic convergence.   

 

!p !( ) =
! pk ,c ! "1

pk ,c + ! #1( ) pB # pk ,c( ) 1" ! " 2

$
%
&

'&

! = 2

 
!p !D( ); !D = argmin! ; !p !( ) "#k

mk !p !( )( )

I will ask you to 
code it with TR 



Dogleg Method: Theory 



Global Convergence of CP Methods 



Numerical comparison between methods 

•  What is a fair comparison between methods?  
•  Probably : starting from same point 1) number of function evaluations 

and 2) number of linear systems (the rest depends too much on the 
hardware and software platform). I will ask you to do this.  

•  Trust region tends to use fewer function evaluations (the modern 
preferred metric; ) than line search .  

•  Also dogleg does not force positive definite matrix, so it has fewer 
chances of stopping at a saddle point, (but it is not guaranteed either).  



4.3 GENERAL CASE: SOLVING 
THE ACTUAL TR PROBLEM 
(DOGLEG DOES NOT QUITE 
DO IT) 



Trust Region Equation 



Theory of Trust Region Problem 

Global convergence 
away from saddle 
point 

Fast Local 
Convergence 



How do we solve the subproblem?  

•  Very sophisticated approach based on theorem on structure of 
TR solution, eigenvalue analysis and/or an “inner” Newton 
iteration.  

•  Foundation: Find Solution for  



How do I find such a solution?  



TR problem has a solution 

!



Practical (INCOMPLETE) algorithm  

It generally gives a machine precision solution in 2-3 iterations 
(Cholesky) 



The Hard Case                

qj
T g = 0

! = "!1 # p =
qj
T g

! j " !1j:! j $!1
% qj

p !( ) = qj
T g

" j # "1j:" j $"1
% qj + !q1

!" p "( ) = #k

If double root, things continue to be complicated … 



Summary and Comparisons 

•  Line search problems have easier subproblems (if we modify 
Cholesky).  

•  But they cannot be guaranteed to converge to a point with 
positive semidefinite Hessian.  

•  Trust-region problems can, at the cost of solving a complicated 
subproblem.  

•  Dogleg methods leave “between” these two situations.  




